
# **Cell Stem Cell**

## Hepatic cytochrome P450 8B1 and cholic acid potentiate intestinal epithelial injury in colitis by suppressing intestinal stem cell renewal

#### **Graphical abstract**



### Authors

Li Chen, Tingying Jiao, Weiwei Liu, ..., Shijun He, Frank J. Gonzalez, Cen Xie

#### Correspondence

heshijun@simm.ac.cn (S.H.), gonzalef@mail.nih.gov (F.J.G.), xiecen@simm.ac.cn (C.X.)

### In brief

Xie and colleagues propose a regulatory mechanism of hepatic bile acid metabolism in colitis pathogenesis. They find that the hepatic CYP8B1-cholic acid metabolic axis impairs Lgr5<sup>+</sup> intestinal stem cell renewal by repressing PPARα, thus exacerbating intestinal injury. Hepatic FXR activation or CYP8B1 knockout restores damaged epithelial barrier and alleviates colitis.

#### **Highlights**

- CA accumulates in the gut during colitis because of activation of hepatic CYP8B1
- Exogenous CA or liver CYP8B1 overexpression potentiates intestinal injury
- Excessive CA triggers Lgr5<sup>+</sup> ISCs dysfunction by suppressing PPARα-mediated FAO
- Activation of liver FXR and ablation of CYP8B1 expression alleviate colitis

Chen et al., 2022, Cell Stem Cell 29, 1366–1381 September 1, 2022 Published by Elsevier Inc. https://doi.org/10.1016/j.stem.2022.08.008

