Check for updates

DDX3X alleviates doxorubicin-induced cardiotoxicity by regulating Wnt/β-catenin signaling pathway in an in vitro model

¹Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China

²Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China

³Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China

⁴Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, China

Correspondence

Enkui Hao, Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, 16766 Jingshi Rd, Jinan, Shandong 250012, China. Email: haoenkui@sdu.edu.cn

Funding information

Science and Technology Project of Shandong Province, Grant/Award Number: 11731303; National Nature Science Foundation of China, Grant/Award Number: 81873473; Academic Promotion Program of Shandong First Medical University, Grant/Award Number: 2019QL014; Jinan City's Science and Technology Innovation Program of Clinical Medicine, Grant/Award Number: 202019175

Abstract

The life-threatening adverse effects of doxorubicin (Dox) caused by its cardiotoxic properties limit its clinical application. DDX3X has been shown to participate in a variety of physiological processes, and it acts as a regulator of Wnt/ β -catenin signaling. However, the role of DDX3X in Dox-induced cardiotoxicity (DIC) remains unclear. In this study, we found that DDX3X expression was significantly decreased in H9c2 cardiomyocytes treated with Dox. *Ddx3x* knockdown and RK-33 (DDX3X ATPase activity inhibitor) pretreatment exacerbated cardiomyocyte apoptosis and mitochondrial dysfunction induced by Dox treatment. In contrast, *Ddx3x* over-expression ameliorated the DIC response. Moreover, Wnt/ β -catenin signaling in cardiomyocytes treated with Dox was suppressed, but this suppression was reversed by *Ddx3x* overexpression. Overall, this study demonstrated that DDX3X plays a protective role in DIC by activating Wnt/ β -catenin signaling.

KEYWORDS

apoptosis, cardiotoxicity, DDX3X, doxorubicin, Wnt/β-catenin

1 | INTRODUCTION

Doxorubicin (Dox) is a highly effective antineoplastic agent against various malignancies, such as lung cancer, breast cancer, leukemia, and lymphoma.^[1,2] However, the cardiotoxic side effects of Dox,

including acute and chronic dose-dependent cardiotoxicity and heart failure, limit its clinical application.^[3] A number of factors participate in the pathogenesis of Dox-induced cardiotoxicity (DIC), including oxidative stress, apoptosis, and intracellular calcium dysregulation.^[4] However, the underlying mechanisms remain largely unknown.

Abbreviations: ANOVA, analysis of variance; CCK-8, cell counting Kit-8; DIC, dox-induced cardiotoxicity; Dox, doxorubicin; PVDF, polyvinylidene difluoride; qRT-PCR, quantitative real-time polymerase chain reaction; ROS, reactive oxygen species; SDS-PAGE, sodium dodecylsulfate-polyacrylamide gel electrophoresis.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2022 The Authors. Journal of Biochemical and Molecular Toxicology published by Wiley Periodicals LLC.

J Biochem Mol Toxicol. 2022;36:e23077. https://doi.org/10.1002/jbt.23077