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A B S T R A C T   

Glioblastoma (GBM) microenvironment heterogeneity poses a major challenge to GBM therapy. Glioma stem 
cells (GSCs) and tumor-associated macrophages (TAMs) are important elements in the GBM microenvironment 
and are crucial for malignant progression. Here, we constructed prodrug nanoparticles (A-PER-p(TMZ)29/Clo) 
containing perifosine (Akt inhibitors), an ester bond-linked poly-temozolomide (poly(TMZ)29) prodrug, and 
clodronate (Clo) for combined approach to TAMs depletion, GSCs eradication, and activation inhibition of GBM. 
A-PER-p(TMZ)29/Clo treatment in a mouse model of intracranial GBM significantly inhibited tumor growth and 
markedly extended survival. These findings suggest that A-PER-p(TMZ)29/Clo provides a new strategy for 
therapeutic targeting of the heterogeneous glioma microenvironment.   

1. Introduction 

Glioblastoma (GBM) remains the most aggressive and devastating 
primary brain tumor that is highly resistant to conventional therapies 
[1,2]. Studies have shown that tumor microenvironment heterogeneity 
plays a key role in supporting the malignant growth and progression of 
GBM [3–6]. Single therapies for GBM are less effective than combined 
therapies. Glioma stem cells (GSCs) and tumor-associated macrophages 
(TAMs) are important elements in the GBM microenvironment and are a 
major source of relapse and chemoresistance [7]. Therefore, there is an 
urgent need to develop novel and effective therapeutic strategies for 
GBM. 

About 30–50% of the cells in gliomas are TAMs, which facilitate 
neoplastic cell proliferation, survival, and migration [8]. Many studies 
have shown that TAMs promote glioma growth and invasion. In GBM, 
increased TAM numbers are related to poor patient prognosis [9]. TAMs 
can polarize to proinflammatory M1 macrophages or anti-inflammatory 
and immunosuppressive M2 phenotype macrophages. Reducing the 
density of TAMs in gliomas resulted in attenuated glioma invasion and 
growth [10,11]. These studies suggest that decreasing the number of 

TAMs could be an effective therapeutic strategy to inhibit glioma growth 
[12]. 

GSCs are a subpopulation of glioma cells that are capable of self- 
renewal and differentiation [13]. Though GSCs represent a small pro-
portion of the total tumor volume, they are thought to play a significant 
role in resistance and recurrence [13]. Conventional treatment with 
surgery, radiation, and chemotherapy may not efficiently eliminate 
GSCs. Indeed, the crosstalk between GSCs and TAMs makes gliomas 
difficult to treat by conventional therapies and exacerbates disease 
progression [14]. GSCs release periostin (a member of the fasciclin 
family and a disulfide-linked cell adhesion protein) to recruit TAMs 
[15]. GSCs secrete chemokines and growth factors [vascular endothelial 
growth factor, stromal cell-derived factor-1 (SDF1), and transforming 
growth factor-β1 (TGF-β1)] to recruit TAMs to the tumor site where they 
polarize into immunosuppressive M2 phenotype [16]. TAMs release a 
variety of cytokines and signaling molecules such as TGF-β to enhance 
GSC invasiveness and promote the GSC phenotype [16]. After decades of 
glioma cell-targeted therapies, the overall survival rate of patients with 
GBM has not been significantly improve. Therapies targeting GSCs 
therapy may improve the efficacy of glioma treatment [17]. 
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